Alignment of Flexible Protein Structures
نویسندگان
چکیده
We present two algorithms which align flexible protein structures. Both apply efficient structural pattern detection and graph theoretic techniques. The FlexProt algorithm simultaneously detects the hinge regions and aligns the rigid subparts of the molecules. It does it by efficiently detecting maximal congruent rigid fragments in both molecules and calculating their optimal arrangement which does not violate the protein sequence order. The FlexMol algorithm is sequence order independent, yet requires as input the hypothesized hinge positions. Due its sequence order independence it can also be applied to protein-protein interface matching and drug molecule alignment. It aligns the rigid parts of the molecule using the Geometric Hashing method and calculates optimal connectivity among these parts by graph-theoretic techniques. Both algorithms are highly efficient even compared with rigid structure alignment algorithms. Typical running times on a standard desktop PC (400 MHz) are about 7 seconds for FlexProt and about 1 minute for FlexMol.
منابع مشابه
FlexSADRA: Flexible Structural Alignment using a Dimensionality Reduction Approach
A topic of research that is frequently studied in Structural Biology is the problem of determining the degree of similarity between two protein structures. The most common solution is to perform a three dimensional structural alignment on the two structures. Rigid structural alignment algorithms have been developed in the past to accomplish this but treat the protein molecules as immutable stru...
متن کاملDatabase searching by flexible protein structure alignment.
We have recently developed a flexible protein structure alignment program (FATCAT) that identifies structural similarity, at the same time accounting for flexibility of protein structures. One of the most important applications of a structure alignment method is to aid in functional annotations by identifying similar structures in large structural databases. However, none of the flexible struct...
متن کاملFlexible Structural Neighborhood—a database of protein structural similarities and alignments
Protein structures are flexible, changing their shapes not only upon substrate binding, but also during evolution as a collective effect of mutations, deletions and insertions. A new generation of protein structure comparison algorithms allows for such flexibility; they go beyond identifying the largest common part between two proteins and find hinge regions and patterns of flexibility in prote...
متن کاملFlexible structure alignment by chaining aligned fragment pairs allowing twists
MOTIVATION Protein structures are flexible and undergo structural rearrangements as part of their function, and yet most existing protein structure comparison methods treat them as rigid bodies, which may lead to incorrect alignment. RESULTS We have developed the Flexible structure AlignmenT by Chaining AFPs (Aligned Fragment Pairs) with Twists (FATCAT), a new method for structural alignment ...
متن کاملCLeFAPS: Fast Flexible Alignment of Protein Structures Based on Conformational Letters
Summary: CLeFAPS, a fast and flexible pairwise structural alignment algorithm based on a rigid-body framework, namely CLePAPS, is proposed. Instead of allowing twists (or bends), the flexible in CLeFAPS means: (a) flexibilization of the algorithm’s parameters through self-adapting with the input structures’ size, (b) flexibilization of adding the aligned fragment pairs (AFPs) into an one-to-mul...
متن کاملProgressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. International Conference on Intelligent Systems for Molecular Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 2000